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6 Some Advanced Topics
6.1 Advanced Models

6.1.1 Regression When the
Dependent Variable is Implicit

In all cases considered in previous sections,
the assumption has been made that the deter-
ministic part of the model equation can be
solved explicitly for the dependent variable.
However, this may not be true in some cases.
An example of such a model written in terms
of the true value for the dependent variable

f=AE.B,,85) is

Bk |, ‘ (k+A? ’ [ 3 (2f-
3(Bl+62){ k2-kf+f? i
—tan-1[L | {e= _
tan (J:T)]} £=0 (6.1-1)

where k=3J61 +8, and f=££,8,.8,) is the exact
solution of equation 6.1-1. As can be seen, fis
implicit in the model equation and cannot be
directly solved for. A general deterministic form
for an exact model (that is, a model that does
not contain ¢} where the dependent variable is
implicit is

glf&.p).£.81=0 (6.1-2)
where £ and g are defined as usual.

Based on equation 6.1-2, a true regression
model can be written in terms of observation
vector Y and disturbances ¢ in the usual form

Y=f(£.8)+¢ (6.1-3)
where f(£,8) is the vector of order n that is com-
puted from

g[f(gﬂ)éé]:g (6°1-4)
In equation 6.1-4 vector g of order n represents
n equations, each of which has the form of equa-
tion 6.1-2 written for an observation point. As

an example, equation 6.1-1 would be written in
the form

&=
2
B[ 08
3(8;+6)| E2-hf+f2

~tan™! ( j—;: ) ]}_5;:0, i=1,2,..,n

Note that in equation 6.1-5 only f evaluated at
point i (that is, f;) appears in the equation to
compute g;. However, in general this equation
could contain values of f evaluated at any
number of the possible points j=1,2, ..., n. An
example of this type of model is the numerical
model discussed in the next section.

The estimated regression model derived from
equations 6.1-3 and 6.1-4 is

st

(6.1-5)

Y=f(£.b)+e (6.1-6)

and

g[f(gag),éagl=g (6'1'—7)
where b and e are, as usual, general estimates
of 8 and ¢, respectively.

The general approach to solving the implicit-
variable problem is very similar to that followed
in section 3.3.1. First, the dependent variable
values are written using a Taylor series expan-
sion about an initial set of parameters. Then,
from this, the linearized regression problem is
set up and solved recursively to give the final
solution to the nonlinear problem.

Taylor series expansion of f about an ar-
bitrary initial set of parameters b, can be writ-
ten in the form of equation 3.3-5,

flE.D)=fo+Xo(b-bg) (6.1-8)
where
fo=£(£.bo) (6.1-9)
"-é'0={gfi _ } (6.1-10)
ab; |b=by |.

By using equation 6.1-6, equation 6.1-8 can be
modified to give the estimated linearized regres-
sion model
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Y-fo=Xo(b-bo)+e (6.1-11)
which is exactly the same as the model used for
the standard nonlinear case discussed in section
3.3.1.

To solve the linearized regression model based
on equation 6.1-11, f, can be computed from
equation 6.1-7 with =4, and X, can be com-
puted by implicitly differentiating equation
6.1-7 with respect to b; ;G=1,2,...,p), setting
b=b,, then solving for XO To accomplish this
computation of X, note that for any differen-
tial change db in parameter vector b to produce
a new solution f of g=0, the total differential
dg must equal zero because g is always zero.
Hence, by employing the chain rule of calculus,
there results

o |86=0,j=12....p (6.1-12)

dg= ‘———+M o ’

where M={M,;}= {ag,/af} Note that if g; con-
tains only fo then M is diagonal. Equation
6.1-12 can be evaluated using b=b, and

fo=f{&,bo) to give

a d

‘ i =)_{;.’=-g_;_gl ‘ —g-) ,j=1,2,....p (6.1-13)
ab; |y ab; I

where

og:
1}_40={ —aﬁ } (6.1-14)
fi if=ty Jnxcn)

and subscript (or superscript) 0 means that the
quantity is evaluated using b=b, and f=f,.
Solution of equation 6.1-7 for f; (using, for ex-
ample, Newton iteration) followed by solution
of equation 6.1-13 for X, provides a convenient
method of obtaining initial values f, and X,
from initial parameter estimates b,;. However,
for subsequent iterations this method can be
time consuming because it involves solving g=0
each time a new vector f and a new set of
sensitivity vectors X; are to be computed from
an updated parameter set.

A good method for computing good approx-
imate values of f and X correspondmg to some
arbitrary parameter set b that is close to b,

involves approximating g with another Taylor
series expansion. If b is close enough to b, to
allow dropping all terms except linear terms,
then Taylor series expansion of equation 6.1-7
about initial set of dependent variable values f,
can be written as

&lf(£,6).£,61=0

=go(b)+My(b)f-fo) (6.1-15)
where go(b)=g(fo.5.b), Mo(B)={2g,/3f;l;=1,}
and f=f(£b). By knowing b, equation 6.1-15
may be solved for f. Corresponding values of X
are obtained as follows. If equation 6.1-15 is
implicitly differentiated with respect to
bj (i=1,2,...,p), there results

agolb) 3 b)
£ =-M,(b —f— == (f-f;) (6.1-16)
ab; ab; ab;

or,

of ago@ aMo(g)

J—— _X ___M 1 b

2b, My (b) at, (f-fo) |

i=1,2,.p . {6.1-17)

By using the above results, solution of the
nonlinear regression problem is obtained by a
procedure analogous to the procedure followed
for the standard nonlinear problem. As in-
dicated previously, to begin the first iteration
assume an initial set of parameters b, and solve
equation 6.1-7 for fy=f(£,bo). Then solve equa-
tion 6.1-13 for X,. Next, form and solve normal
equation 3.3-10 by minimizing S(b) (given by
equation 3.3-4) with respect to b, then scaling
the resulting equations with C,. That is, form
and solve for §,;

S8 o8, =SFulY-f) (6.1-18)
where

So=X0oCo (6.1-19)

8;=Cy(b;-by). (6.1-20)
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T'hwe tha gonand 1
For the second iteration, solve eq' ation

6.1-15, written using b=, for f-fo=f,~fo. The
result can be stated as

u=-Mi'g, (6.1-21)
where subscript 1 on M and g indicates evalua-

tion using the most recent values available for

f and b (that is, f; and b,), and

u1=h-lo (6.1-22)
Next, solve equation 6.1-17 for X;:
xi=-pl][ 2800 o220} ]
=1l ay ,1 ‘ ab; ’1—1 '
j=12,..p (6.1-23)

where (-); indicates evaluation using b=b;.
Finally, form and solve the normal equations,
written in terms of S; and f;, for J,.

For general 1terat10n r, the equations to solve
are

u,=-M1'g, (6.1-24)
2g,.,(b) M, 1(b)
]
j=12,..p0  (6.1-25)
fr=u, (6.1-26)
§f @8,8,4+1 =§_,T w(Y-£) (6.1-27)
b,41=C8, 4110, (6.1-28)
where
S,=X.C, . (6.1-29)

f0=f(§:éo) so that g0=g, and f—1=f0 .

At convergence of the solution g,, u, and
by all tend to zero so that f,=fi, b) where

g b,41%b, At this point S(b)=(Y-f(, b)7w
(Y-fl&, b)) is at a minimum, and the nonlinear
regression problem has been solved.

The solution procedure given by equations
6.1-24 through 6.1-29 can actually be con-
sidered to be a generalization of the Gauss-
Newton procedure discussed in section 3.3.1,
because if the standard nonlinear model is

stated in the form

g=fl,b)-f=0 (6.1-30)
then
&=fl&b)-fr1 (6.1-31)
M. =-1 (6.1-32)
( Sar it ) ( (6.1-33)

and equations 6.1-24 through 6.1-29 become
the standard Gauss-Newton algorithm.

Iteration parameters p and p should be ap-
plied to the present method in the same man-
ner as they are for the Gauss-Newton method.
Use of p to modify step size §,,; leads to equa-
tion 3.3-19 (b,41=pC,9,;11Db,) to compute
b,4+1- To employ p, equation 6.1-27 is trans-
formed to

(SLsS, +ul)s, 1 =STo(Y-£,) . (6.1-34)

The method for solution of the implicit-
variable model given here requires the same
three conditions to guarantee convergence to a
global minimum as discussed for the modified
Gauss-Newton method in section 3.3.3. How-
ever, in addition, the method requires that M
and 2g/ab; (j=1,2, ..., p) be continuous and
unique for all b belongmg to region R (see equa-
tion 3.3-25).

Solution Algorithm.

1. Before the first iteration, solve equation
6.1-7 for f;, using an initial estimate b, for
b, and set f_;=f;.

Solve equation 6.1-24 and equation
6.1-25 for u andX’(] 1,2,...,0).

Solve equatlon 6.1-26 for f,.

Solve equation 6.1-34 for §,

Solve equation 3.3-17 for Q,H

Solve equation 3.3-19 for b, .

»

RN
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7. Test to determine if |df/c|>e (i=1,2,..,p).
(See ste P 5, Gauss-Newton algorithm.)

8. If |dItl/c|>¢, increment r by one and
return to 2. If not, then the process has
converged.

6.1.2 Regression When the Implicit-
Variable Model is Numerical

If the numerical model assumes the general
form of equation 3.3-21, which for convenience
is restated here as

D(h.gBh=q(h£.B), (6.1-35)

then the method derived in the previous section
can be applied. The solution can be conceptual-
ly developed in two stages, first making the
assumption that numerical solution points coin-
cide exactly with observation points, which
implies m=n, then, second, relaxing the as-
sumption by following either of the two pro-
cedures described to obtain f from h for the
Gauss-Newton method in section 3.3.2.

To develop the first stage of the solution, first
note that because m=n, equation 6.1-35 may
be written in the form g=0 analogous to equa-
tion 6.1-7:

g=q-Dh=0 (6.1-36)
where h=f. Next, expand equation 6.1-36 in a
Taylor series to give equations exactly analo-
gous to equations 6.1-24 and 6.1-25. Pertinent
quantities in these equations are given by

8D
-|-=] b,.;-D} i=1,2,...,m(6.1-37)
i

(] 2],

(6.1-38)
2b;

a2D
= _|n,
ab;ah; I | ab,oh; I

aM"l(b) ) ‘

- g (6.1-39)
ab; Ir

where subscript i on a matrix denotes column
i of the matrix. By using equations 6.1-38 and
6.1-39, an equation analogous to 6.1-25 can be
written

~|[ 5 ot
,.;f::[( a:,.“’:,,) fsoz {2
.u;},,-=1,2,...,,,. (6.1-40)

The second stage results from using one of the
two procedures for obtaining f from k described
in section 3.3.2 to obtain f from & and X; from
9h/db; in the present case. With f and’ X de-
fined, the solution algorithm of section 6.1.1 can
be applied directly.

6.2 Modified Beale's Measure
of Nonlinearity

Most of the methodology discussed here to
analyze regression models is based on the as-
sumption that the model is linear in the param-
eters. In the case that the model is nonlinear,
Beale (1960, p. 54-55) developed an empirical
measure of degree of nonlinearity with respect
to the confidence regions on parameters. How-
ever, Guttman and Meeter (1965, p. 635) showed
that if the degree of nonlinearity is high, Beale’s
measure seriously underestimates it. To correct
for this underestimation problem, Linssen
(1975) modified Beale’s measure. More recent-
ly, Bates and Watts (1980) developed measures
of nonlinearity based on the concepts of dif-
ferential geometry. Although these measures
are based on a much more extensive theory than
Beale’s (1960) measure or Linssen’s (1975)
modification, they also require extensive com-
putation. Thus, here Beale’s empirical measure
as modified by Linssen is extended to give an
approximate indication of the degree of average
model nonlinearity.

To develop the measure, consider a linearized
model of the form of equation 5.1-1, where, for
convenience, general estimate b, replaces 3, and
by is set equal to b to result in
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A A
f=t+Xb-b (6.2-1)
where f=[(§,§). To emphasize that fP is a
linearized estimate of f(£,b)=f,, a superscript o
is appended to f,. If f7 is calculated from equa-
tion 6.2-1 for m sets of parameter vectors
b,(¢=1,2,...,m), then a measure ¢ 2 of model non-
hneanty in the region covered by the varied
parameter sets is

= L (-l . (6.2-2)
=1

Equatlon 6.2-2 is the sum of squared distances
(that is, squared le hs of vectors) between
points w”ff and w “if, in observation space.
(Recall that the distance between two points is
the length of the vector joining the points, and
that the squared length of a vector is given by
the sum of squared lengths of its components.)

As explained further on, the most useful
measure of nonlinearity is obtained by multiply-
ing equation 6.2-2 by the quantity

qsz/ E [(L’?-[) wlf-Hr?

to obtain
X L Gt alfr £7)
N,=gs? "=nl (6.2-3)
L (- -1
=1

which is an extension for ¢<p of Linssen’s (1975)
modification of Beale’s measure of nonlinearity
(Beale, 1960, p. 54-55).

Equation 6.2-3 can be justified as follows (see
also Guttman and Meeter, 1965, and Linssen,
1975). The weighted distance between {7 and f,
is designated ed so that the geometric relation-
ships among weighted vectors f, f, and f; can
be diagrammed in observation space as shown
in figure 6.2-1. Now,

2_ed)® _ d(ed)?
d2 (d2)2
(f, -Vl £7)
[(ﬁ?-[) wlfP-PI?

(6.2-4)

A
Q" f d Q" fp

ed

Figure 6.2-1
where, by definition,
2=(fp-HTalf?-)
=@(g,—g>1Tgu_f(g,—én
=007 XTwX(b,b) - (6.2-5)

To obtain a more convenient form for d?, note
that

(Y- A Y- (Y- Y-
—(Y-)f -X(b, -B)7
~(Y-PTulY-f)
=-2(b-b)TX Tl Y-) +(b-5)TX T wX (b, -b)

(Y-[-X (By-b)

=(b-B)TXTwX(by-b) (6.2-6)
where equation 5.1-9 was used. The combina-
tion of equations 6.2-5 and 6.2-6 shows that

@=(Y- o Y-~ (Y-NT o Y-b). (6.2-7)

If f7 is assumed to lie on the edge of the con-
f1dence region given by equation 5.6-12 so that
=07, @ then from equations 5.6-12 and
6 2-7 it can be seen that

d?=qs’F (q,n-p) . (6.2-8)
Hence, if both numerator and denominator of

equation 6.2-4 are averaged over m sets of
parameters, there results

E(=N,F (g,n-p) - (6.2-9)
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Based on equation 6.2-9, Beale (1960, p. 60)
ranked the degrees of nonlinearity as follows:
The model is highly nonlinear if

N>1/F(g,n-p) (6.2-10)
because in this case E(e?)>1, and the discrepan-
cy is actually greater than d. If

N,<0.01/F (q,n-p), (6.2-11)
then the model is classed as being effectively
linear because E(e%)<0.01. For points in be-
tween, Beale (1960, p. 60) stated that the linear
theory is adequate to give a rough idea of sig-
nificance but may not bring out full implications
of the analysis. However, Guttman and Meeter
(1965, p. 636) noted that equation 6.2-11 may
be overly conservative to define a maximum
value of N, for an approximately linear model.
Experiments conducted by the authors indicate
that, if

N,<0.09/F {q,n-p), (6.2-12)
then confidence intervals given by linear theory
are fairly good approximations of the exact ones
as given by Vecchia and Cooley (1987). Thus,
equation 6.2-12 is used to define the maximum
value of N, to consider the model to be
roughly linear.

Because equation 6.2-9 is justified by assum-
ing that the points f7 lie on the edge of the con-
fidence region, a reasonable way to obtain the
points is to choose them from equation 5.6-14,
although, as noted by Beale (1960, p. 55), the
points do not have to lie on the edge of the con-
fidence region. Thus, one could use m<2q sets
of parameters b7 =[b7,,87]. Note that whether
or not the model is linear, b;,and 8, correspond-
ing to the partition of b given in equation 5.6-3
are properly chosen without the necessity of
performing additional least squares solutions to
obtain each set b;,. This fact is true because
subset b, is required to lie on the edge of the
linearized confidence region.

Rigorous use of equations 6.2-10 through
6.2-12 theoretically requires that disturbances
be distributed normally. However, it would be
convenient to be able to gauge the degree of
nonlinearity of the model irrespective of the

properties of e. If the confidence region in equa-
tion 5.6-12 were large enough to encompass
virtually all physically plausible sets of param-
eters, then model nonlinearity as assessed using
equations 6.2-10 through 6.2-12 would be
meaningful. Based upon past experience, F
values generated using «=0.05 have been found
to yield such a confidence region and thus to be
adequate to gauge nonlinearity.

Problem 6.2-1

Four sets of parameters that correspond to
four points on the edge of the linearized con-
fidence region in equation 5.6-13 result from
problem 5.6-2. These four sets of parameters
can be subdivided into two groups of two. Pick
two different parameter sets from the two
groups and compute two corresponding sets of
drawdowns at the observation points using the
nonlinear (Theis) model. Then, using the modi-
fied Beale’s measure program (appendix 6.4.1),
find the modified Beale’s measure. Is the model
nearly linear?

Problem 6.2-2

Use the four parameter sets resulting from
problem 5.6-3 in the nonlinear regression flow
program of appendix 4.3.4, as augmented by the
inserts of appendix 6.4.1, to compute the modi-
fied Beale’s measure. Are the various statistical
measures obtained from the linearized model ap-
proximately valid (at least as determined from
the four parameter sets employed)?

6.3 Compatibility of Prior
and Regression Estimates
of Parameters

If the regression model contains prior infor-
mation on the parameters, an important part of
the analysis to determine whether or not the
model is correct is to test the null hypothesis
that the prior and sample information are in
agreement; in other words,

Hy: E(Y ,[,(£,60)=X,(B-bo) versus
Hy:BY, £, b X,(6-by).
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As indicated in section 5.5, graphical analysis
of residuals can usually detect an incompatibil-
ity between sample and prior information.
However, in some cases an additional test might
be desired. Theil (1963) showed that the test
statistic

T=(¥,~£,(£bo)-X,(6*-5o)”
107X, 0, X)X+ o)

(YL (£:bo)-X ,(B*-bg) (6.3-1)
where vector é* is the ordinary least squares
estimate of vector §, is Chi square distributed
with n_ degrees of freedom (x2(n ] prov1ded

that all Afiln l.
vnav au o1 l..uc aaaumyuuua 51ch U.y cqunuuua

5.2-1 through 5.2-3, 5.2-6, and 5.2-10 hold

true, o2 is known, and w is of the form
@ 9
w= (6.3-2)
0 @

where w;, and w, are known and symmetric

positive definite of order n, and n .+ T€Spective-
ly. If @ is of the form
vlo
W= (6.3-3)
o Ul

and o° is unknown, then the test statistic
P=(Y, £, (£.b0)-X, (b*-b)T
=Y fp(E:bo-X,(0*-by))
(P AP P A e
(Y, ~£,(E:bo)-X,(b*-by)) (6.3-4)
is asymptotically x%(n,) distributed. If the com-
puted value of T, v, is greater than xz(n ),
where o indicates significance level, then the
null hypothesis is rejected.
Problem 6.3-1

Using equation 6.3-4, test the compatibility

of the prior estimate of the boundary head, f,
and the pure regression estimate, b2 , of pro%
lem 3.2-1. To conduct this test you will have
to do an ordinary least-squares regression. The
model of appendix 4.3.4 may be employed for
this in the same manner as for problem 4.2-1.
Use the model output to obtain the necessary
quantities in equation 6.3-4.

6.4 Appendix

6.4.1 Documentation of Program to
Compute the Modified Beale's
Measure

This program performs a straightforward
computation of the modified Beale’s measure,
equation 6.2-3. Vectors f,, f7, and f are as-
sumed to be composed of sample information
and direct prior information on some or all
parameters. The weight matrix for sample and
prior information is assumed to be given in the
form of equation 3.4-12, and the sensitivity
matrix for the prior information is assumed to
be given by equation 4.1-6.

There are two versions of the program. One
is for general use, and all variables needed for
the calculation must be read in. The other
version is designed to be an integral part of
the regression ground-water model documented
in appendix 4.3.4 and requires only ¢ and the
extra sets of parameters needed for the Beale’s
measure calculation as input in addition to
input already required for the regression
solution.

The programs were developed using the
Microsoft Fortran Compiler, Version 3.3, with
the DOS 2.0 operating system on an IBM
PC/XT computer with the IBM 8088 Math
Coprocessor and 256 KB memory. Except for
the OPEN statements near the beginning of
the general code, Fortran 66 was used through-
out to make the codes as machine independent
as possible. The general source code is con-
tained in file BEALE.FOR, and the version
designed to be inserted into the regression
code is contained in file BLEINS.FOR, both of
which are in the diskette accompanying this
report.
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Input data for General Version.—Data Set A.
Problem size information; one card (format 415, F10.0).

Line Columns Variable Definition
1-5 NVAR ....... Number of parameters, p.
6-10 NRES ....... Number of restrictions, g.
11-15 NOBS ....... Number of sample observations, n_.
16-20 NPRIR ...... Number of regression parameters imving direct prior
information, n_.
21-25 NPTS ....... Number of data sets to compute the modified Beale's
measure, m.
26-35 VAR ........ Error variance, s°.
Data Set B. .
Estimated regression parameters, b (format 8F10.0).
Line columns Variable . Definition
1-10 BOPT(1) Estimated regression parameters, entered sequentially
11-20 BOPT(2) from 1 through NVAR.
BOPT(NVAR)
Data Set C.

Dependent variable vector for sample information, ﬁ,, computed using é
(format 8F10.0).

Line columns Variable Definition
1-10 FOPT(1) Computed dependent variable values, entered sequen-
11-20 FOPT(2) tially from 1 through NOBS.
FOPT(NOBS)
Data Set D.
Weight matrix for sample information, z;l (format 8F10.0).
Line columns Variable Definition
1-10 w(1) Diagonal weight matrix for sample information,
11-20 W(2) entered sequentially from 1 through NOBS.
W(NOBS)
Data Set E.
Sensitivity matrix for sample information, X (format 8F10.0)
Line columns Variable Definition
1-10 X(1,1) Sensitivity matrix for sample information, entered se-
11-20 X(2,1) quentially 1 through NVAR for each observation.
: . Each new observation begins a new line, for a total
X(N'V AR,1) of NOBS observations.
1-10 X(1,2)
X(N.V AR,2)

X(NVAR,NOBS)

191
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Data Set F.
Parameter numbers having prior information (format 1615).

Line columns Variable Definition
1-5 IPR(1) Array subscript numbers for regression parameters in
6-1

0 IPR(2) BOPT{(1) having prior information, entered in any
. order from 1 through NPRIR.

IPR'(NPRIR)
Omit data set of NPRIR=0.

Data Set G.
Standard deviation matrix for prior information, U"* (format 8F10.0).
Line columns Variable Definition
1-10 WP(1) Diagonal standard deviation matrix for prior informa-
. . tion, entered in the same order as IPR(I) from 1
WP(NPRIR) through NPRIR.

Omit data set if NPRIR=0.

Data Set H.
Alternate parameters sets, b, (format 8F10.0). This data set and the next one
are read in sequence (H, I, H, I, ...) a total of NPTS times.

Line columns Variable Definition
1-10 B(1) Alternate parameter sets, entered sequentially 1
11-20 B(2) through NVAR. Order must be the same as for
. . BOPT().
B(NVAR)
Data Set I.

Alternate dependent variable vectors for sample information, f,,, computed
using b, (format 8F10.0).

Line columns Variable Definition

1-10 FC(1) Alternate sample dependent variable values computed

11-20 FC(2) using the nonlinear model, entered sequentially 1
through NOBS. Order must be the same as for
FOPT(I).

FC(NOBS)
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Output for General Version.—Qutput is all
clearly labeled; it is ordered as follows:
1. Data sets A through G.

92 Data gate H and I. MNata far nuumhara 9

through 4 below are printed sequentially
for each data set £(¢=1,2,...,m).
3. Dependent variable vector, f3, for sample
information, computed using the linear-
ized model. .
Total qume of squared differences (f,-AT

ShEen Tl SIS EReE L

-lf-f) and (2-HT\f-f), where
=15 53, 7= U637 123, £7=1{%, {7}, and

>

1
Y0
g:

g ghls2

5. Beale’s measure, IIVb=BN.

Use of Version Integral with the Regression
Ground-Water Program.—This version consists
of sets of statements to be inserted into the
program of appendix 4.3.4, as indicated on the
appended listing. Input is the same as if a
regression solution were to be obtained, except
that the initial set of parameters must be the
optimum set b, and extra data relating to the

modified Beale’s measure is required. After

entering data set T, use data sets U and V to

A Ve daapy Latauia WY A g MW MMIAVIA DO

enter the data for t‘—l +2,...,m alternate solutions.
Follow these data with a final line to input q and
s2 with format 15,F10.0. A complete regression
solution is not obtained; only computations
through the calculation of sensitivities on the
first iteration are completed before proceeding
to calculate the modified Beale’s measure. Thus,
output consists of regression output through
number 19 (see “Output’ in appendix 4.3.4) plus
output analogous to numbers 2 through 4 of the
general version of the modified Beale’s measure
program.
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Program Listing for General Version.

c MODIFIED BEALE’S MEASURE PROGRAM BY R. L. COOLEY, USGS, DENVER,
C COLO.
DIMENSION BOPT(20),FOPT(70),B(20),FC(70),FL(70),X(20,70)
1,W(70),IPR(20),WP(20)
COMMON/ITP/IIN,IOUT
COMMON/FLT/X
OPEN (5,FILE='BEALE.DAT’,STATUS='OLD’,ACCESS='SEQUENTIAL'
1, FORM=' FORMATTED’ )
OPEN (6,FILE='BEALE.OUT',STATUS='NEW',ACCESS='SEQUENTIAL’
1, FORM='FORMATTED')
C**FORMAT LIST
1 FORMAT (5I5,F10.0)
2 FORMAT (8F10.0)
3 FORMAT (9HINVAR = ,I4/9H NRES = ,I4/9H NOBS = ,I4
1/9H NPRIR = ,I4/9H NPTS = ,I4/9H VAR = ,Gl1.5)
4 FORMAT (1HO,26X,18HOPTIMUM PARAMETERS
1/1H ,3X,3(3HNO.,9X,4HBOPT, 8X))
5 FORMAT (1HO,9X,52HDEPENDENT VARIABLES COMPUTED WITH OPTIMUM PARAME
1TERS/1H ,3X,3(3HNO.,9X,4HFOPT, 8X))
6 FORMAT (1HO,21X,26HPARAMETERS FOR SAMPLE NO. ,I3
'1/1H ,3X,3(3HNO.,11X,1HB,9X))
7 FORMAT (1HO,12X,44HDEPENDENT VARIABLES COMPUTED FOR SAMPLE NO. ,I3
1/1H ,3X,3(3HNO.,10X,2HFC,9X))
8 FORMAT (38HO SENSITIVITIES FOR OPTIMUM PARAMETERS)
9 FORMAT (1HO,6X,55HLINEARIZED DEPENDENT VARIABLES COMPUTED FOR SAMP
1LE NO. ,I3/1H ,3X,3(3HNO.,10X,2HFL,9X))
10 FORMAT (1HO,S5HBN = ,G11.5)
11 FORMAT (23HOSS((FC-FOPT)*W**.,5) = ,Gl1.5
1/23H SS((FL-FOPT)*Wx* 5) = ,G11.5)
12 FORMAT (1HO,14X,42HRELIABILITY WEIGHTS FOR SAMPLE INFORMATION
1/1H ,3X,3(3HNO.,10X,1HW,10X))
13 FORMAT (1615)
14 FORMAT (1HO,12X,43HNO.S OF PARAMETERS HAVING PRIOR INFORMATION
1/1H ,3X,3(3HNO.,8X,3HIPR,10X))
15 FORMAT (1HO,14X,40HSTANDARD DEVIATIONS OF PRIOR INFORMATION
1/1H ,3X,3(3HNO., 10X, 2HWP,9X))
16 FORMAT (6HOEV = ,G11.5)
C**DEFINE INPUT FILE, OUTPUT FILE, AND ARRAY DIMENSION
IIN=5
I0UT=6
NVD=20
C**READ BASE DATA
READ(IIN,1) NVAR,NRES,NOBS,NPRIR,NPTS,VAR SET A
WRITE(IOUT,3) NVAR,NRES,NOBS,NPRIR,NPTS,VAR
READ(IIN,2) (BOPT(J),J=1,NVAR) SET B
WRITE(IOUT,4)
CALL PRTOTBR (BOPT,NVAR)
READ(IIN,2) (FOPT(I),I=1,NOBS) SET C
WRITE(IOUT,5)
CALL PRTOTB(FOPT,NOBS)
READ(IIN,2) (W(I),I=1,NOBS) SET D
WRITE(IOUT,12)
CALL PRTOTB(W,NOBS)
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‘ Program Listing for General Version—Continued

DO 20 J=1,NOBS

READ(TIN,2) (X(I,J),I=1,NVAR) SET E
20 CONTINUE

WRITE(IOUT,8)

CALL PRTOT(X,NVAR,NOBS,NVD)

IF(NPRIR.LT.1) GO TO 45

READ(IIN,2) EV SET F
WRITE(IOUT,16) EV
READ(IIN,13) (IPR(I),I=1,NPRIR) SET G

WRITE(IOUT,14)

CALL PRTOTC(IPR,NPRIR)

READ(IIN,2) (WP(I),I=1,NPRIR) SET H
WRITE(IOUT,15)

MOATT DPNTATD /1TD ADRDTD \
UVALL PRIULD{(WE ,NFRIR)

DO 40 I=1,NPRIR
40 WP(I)=EV/(WP(I)*WP(I))
C**READ DATA FOR EACH SAMPLE AND COMPUTE MODIFIED BEALE'S MEASURE, BN

45 SUMA=0.
SUMB=0.
DO 80 M=1,NPTS
READ(IIN,2) (B(J),J=1,NVAR) SET I

WRITE(IOUT,6) M
CALL PRTOTB(B,NVAR)
READ(IIN,2) (FC(I),I=1,NOBS) SET J
WRITE(IOUT,7) M
CALL PRTOTB(FC,NOBS)
:l' SUMC=0.
SUMD=0.
DO 60 J=1,NOBS
SUM=FOPT (J)
DO 50 I=1,NVAR
50 SUM=SUM+X(I,J)*(B(I)-BOPT(I))
FL(J)=SUM
TMP=FC (J ) - SUM
SUMA=SUMA+TMP*W (J ) *TMP
TMP=FC (J) - FOPT (J)
SUMC=SUMC+TMP*W(J ) *TMP
TMP=SUM-FOPT(J)
SUMD=SUMD+TMP*W (J ) *TMP
60 CONTINUE
IF(NPRIR.LT.1) GO TO 75
DO 70 J=1,NPRIR
I=IPR(J)
TMP=B(I)-BOPT(I)
TMP=TMP*WP (J ) *TMP
SUMC=SUMC+TMP
70 SUMD=SUMD+TMP
75 WRITE(IOUT,9) M
CALL PRTOTB(FL,NOBS)
WRITE(IOUT,11) SUMC,SUMD
80 SUMB=SUMB+SUMD*SUMD
TMP=NRES
BN=TMP*VAR*SUMA /SUMB
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Program Listing for General Version—Continued

WRITE(IOUT,10) BN

STOP

END

SUBROUTINE PRTOTB(VAL,NO)

C**PRINT VALUES IN THREE GROUPS OF TWO COLUMNS
DIMENSION VAL(NO)
COMMON/ITP/IIN, IOUT
NR=NO/3
IF(3*NR.NE,NO) NR=NR+1
DO 10 K=1,NR
WRITE(IOUT,20) (L,VAL(L),L=K,NO,NR)

10 CONTINUE
RETURN

20 FORMAT (1H ,2X,3(I13,7X,G11.5,3X))
END
SUBROUTINE PRTOTC(IVAL,NO)

C**PRINT INTEGERS IN THREE GROUPS OF TWO COLUMNS
DIMENSION IVAL(NO)
COMMON/ITP/IIN, IOUT
NR=NO/3
IF(3*NR.NE.NO) NR=NR+1
DO 10 K=1,NR
WRITE(IOUT,20) (L,IVAL(L),L=K,NO,NR)

10 CONTINUE ’
RETURN

20 FORMAT (1H ,2X,3(13,8X,14,9X))
END
SUBROUTINE PRTOT(C,NR,NC,NRD)

C*¥*PRINT MATRICES DIVIDED VERTICALLY INTO TEN-COLUMN BLOCKS
DIMENSION C(NRD,NC)
COMMON/ITP/IIN, IOUT
DO 60 K=1,NC,10
J10=K+9
IF(J10.GT.NC) J10=NC
WRITE(IOUT,70) (J,J=K,J10)
WRITE(IOUT,90)

DO 30 I=1,NR
30 WRITE(IOUT,80) I, (C(1,J),J=K,J10)
60 CONTINUE
70 FORMAT(1HO,10(9X,13))
80 FORMAT (1H ,I3,1X,10(1X,G11.5))
90 FORMAT (1H )

RETURN

END
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' Listing of Inserts to the Regression Ground-Water Flow Program.

C

C**INSERT JUST BEFORE EQUIVALENCE STATEMENT FOR MODIFIED BEALE’'S MEASURE
DIMENSION BOPT(20),HOPT(70)
EQUIVALENCE (P(1l),BOPT(1)), (HO(1),HOPT(1))

c

c

C**INSERT AFTER STATEMENT LABEL 260 FOR MODIFIED BEALE'S MEASURE
DO 1000 J=1,NVAR

NNN ANDT/ TN/ T\
VUV DU L\J JTD\V

DO 1100 I=1,NOBS
K=KOBS (I)
1100 HOPT(I)=BK(I)*HC(K)+BL(I)*HC(K+1)+BM(I)*HC(K+ID)+BN(I)*HC(K+ID+1)
SUMA=0.
SUMB=0.
GO TO 640
c
c
C**INSERT JUST BEFORE STATEMENT LABEL 690 FOR MODIFIED BEALE’'S MEASURE
SUMC=0.
SUMD=0.
WRITE(IOUT,2000)
2000 FORMAT (1HO,3X,28HCOMPUTED AND LINEARIZED HEADS/1H ,3X,3HNO.,7X
1,2HHC, 13X, 2HHL)
DO 2200 J=1,NOBS
K=KOBS (J)
HCJ=BK (J ) *HC (K)+BL(J ) *HC (K+1)+BM(J ) *HC (K+ID)+BN (J ) ¥*HC (K+ID+1)
’ HL=HOPT(J)
DO 2100 I=1,NVAR
2100 HL=HL+X(I,J)*(B(I)-BOPT(I))
TMP=HCJ -HL
SUMA=SUMA+TMP*W (J ) *TMP
TMP=HCJ -HOPT (J)
SUMC=SUMC+TMP*W (J ) *TMP
TMP=HL-HOPT(J)
SUMD=SUMD+TMP*W (J ) *TMP
WRITE(IOUT,856) J,HCJ,HL
2200 CONTINUE
IF(NPRIR.LT.1) GO TO 2400
DO 2300 J=1,NVAR
IF(WP(J).LT.1.E-10) GO TO 2300
TMP=B(J) -BOPT(J)
TMP=TMP*WP (J ) *TMP
SUMC=SUMC+TMP
SUMD=SUMD+TMP
2300 CONTINUE
2400 WRITE(IOUT,2500) SUMC,SUMD
2500 FORMAT (23HOSS((HC-HOPT)*W**.5) = ,Gl1.5
1/23H SS((HL-HOPT)*W#*.5) = ,G11.5)
SUMB=SUMB+SUMD*SUMD
c
C
C**INSERT AFTER STATEMENT LABEL 690 FOR MODIFIED BEALE'S MEASURE
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Listing of Inserts to the Regression Ground-Water Flow Program—Continued

READ(IIN,812) NRES,VAR
WRITE(IOUT,2600) NRES,VAR

2600 FORMAT (8HONRES = ,I4/7H VAR = ,Gl1.5)

TMP=NRES
BLN=TMP*VAR*SUMA /SUMB
WRITE(IOUT,2700) BLN
2700 FORMAT (1HO,5HBN = ,G11.5)
Cc
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